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The space-charge forces for short electron bunches in circular motion can be very different from the
space-charge forces for short electron bunches undergoing straight-line motion. The two major effects intro-
duced by the circular motion are an off-axis, so-called ‘‘noninertial space-charge’’ effect, in which there is
essentially no net energy loss of the bunch, and a coherent synchrotron radiation effect, in which the bunch
radiates coherent energy. The consequence of these effects is a potentially large growth in the electron bunch’s
transverse emittance. We derive an expression for these forces from a Green’s function approach, starting with
the definitions of the retarded scalar and vector potentials. In particular, we find an expression for the total
electric field along the direction of motion from a short line of charge in circular motion. These expressions in
turn can be used in numerical particle simulations to estimate the amount of emittance growth, including the
effects of suppressing the coherent synchrotron radiation by reducing the beam pipe dimensions.
@S1063-651X~96!10607-3#

PACS number~s!: 29.27.Bd, 03.50.De, 41.75.Ht

I. INTRODUCTION

The space-charge forces on an electron bunch are a major
consideration in accelerator design. Forces along the direc-
tion of motion can lead to a significant energy redistribution
of the particles, which, in turn, can lead to a large growth in
the bunch’s transverse emittance. For an electron bunch that
is not being accelerated, these forces scale inversely with the
square of the relativistic mass factorg. Because of this fact,
space-charge forces are often ignored in accelerator designs
where the beam is at high energy~greater than 1 GeV!. How-
ever, recent work@1–3# has identified two space-charge-
induced forces for beams in circular motion that are mostly
independent of energy. These forces can cause a significant
emittance growth, even at high energy. The first of these
effects is considered a space-charge curvature effect and is
known as the noninertial space-charge force, in which the
energies of the particles are modified with little total loss by
radiation. The second effect is known as the coherent syn-
chrotron radiation force, in which the bunch radiates coher-
ently. The coherent synchrotron radiation depends on the
beam energy only through the normalized beam velocityb,
and does not diverge for large beam energies as does the
single-particle synchrotron radiation. For sufficiently large
bunch charges and short bunch lengths, the coherently radi-
ated energy will be much larger than the incoherently radi-
ated energy.

Both the noninertial space-charge force and the force
from the coherent synchrotron radiation will lead to a redis-
tribution of the energy of those particles that are in circular
motion within an achromatic bend in a high-brightness ac-
celerator. This redistribution in turn can lead to an unaccept-
able increase in the beam’s emittance that would be roughly
independent of beam energy. Previously, the analytic tech-
nique used to calculate the noninertial space-charge effect
~perturbation expansion of the wave equation for the vector

and scalar potentials! does not easily include the effect of
radiation. Conversely, the technique used to find the radia-
tion effect ~explicit calculation of the retarded fields along
the bunch’s trajectory! does not lead to off-axis effects~such
as the noninertial space-charge force!. In addition, the earlier
techniques cannot easily be used to quantify the emittance
growth in typical accelerator bend systems. In this paper, we
use the retarded Green’s function for the scalar and vector
potentials to establish a formalism that allows us to numeri-
cally evaluate both the noninertial space-charge effect and
the radiation effect everywhere. We will calculate the nonin-
ertial space-charge and radiation effects for a line of charge
~to eliminate the additional single-particle radiation force!;
we can construct the forces for arbitrary distributions simply
by superimposing the solutions for many such lines, dis-
placed both longitudinally and transversely. These solutions
can be easily incorporated in particle-tracking simulation
codes, where line-by-point space charge calculations are
common @4#. Using this technique in a suitably modified
simulation code, we calculate the transverse emittance
growth of the beam as it passes through an achromatic bend.
We present the emittance growth scalings with respect to
energy, bunch length, transverse bunch size, bend radius, and
bend angle, and explore the effect of suppressing the coher-
ent synchrotron radiation by reducing the beam pipe size.

II. CALCULATION OF THE TOTAL SPACE-CHARGE
FORCE FROM A LINE OF CHARGE

In this section, we will find an expression for the total
space-charge force from a line of charge in circular motion
that ~1! includes both the noninertial space-charge force and
the coherent synchrotron force, and~2! can be included in a
numerical particle-tracking code.

Consider the case of a short line of charge traveling in a
circle, where we define theu direction to be along the direc-
tion of motion, and where we use cylindrical coordinates.
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The electric field along the direction of motion is given by

Eu52
]Au

]t
2
1

r

]f

]u
, ~1!

whereAu is the azimuthal component of the vector potential
and f is the scalar potential. If the vector potentialAW is
written asAW 5„dAr ,(b/c)f1dAu,0…, it was shown in Ref.
@1# that
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for the line of charge, wheredAu,n is the deviation of the
azimuthal component of the vector potential from the nor-
malized scalar potential for thenth harmonic,R is the radius
of curvature of the beam’s circular motion,x is the trans-
verse displacement of the observer location from the line’s
trajectory~in the bending plane!, v5bc/R, andEusual is the
component of the force that scales inversely proportional to
g2. The second term represents the contribution from the
noninertial space-charge effect, and the third term leads to
the coherent synchrotron radiation. It has been shown@1#
that the noninertial space-charge term results from the cur-
vature of the charge and current boundary conditions of the
beam, and the radiation term results from an outgoing radia-
tion boundary condition for large radii. In principle,dAu,n
can be found by solution of the wave equation for the vector
potential, but this is hard to do because the solution fordAu,n
must be extended far away from the line of charge in order to
establish the outgoing boundary condition.

Another approach to findEu induced from a line of uni-
form charge of lengthd is to start with the scalar potential
and the azimuthal component of the vector potential using
the retarded potential formalism given in@5#
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where the variablez is the azimuthal angle relative to
the observer location, the path of the integral is over the
line of charge~at the present time!, l5Q/d is the current
density,rW ret is the vector from the source point~at positionz!
at the retarded time to the observer location,r ret5urW retu, uW ret is
the retarded velocity of that point at the retarded time,z8 is
the retarded angle of the point’s velocity, all shown in Fig. 1,
and zf and zr are the present azimuthal angles of the front
and rear of the bunch, respectively. Note thatz8 and z are
considered positive if they lie behind the observer position.
Recall thatx is the transverse displacement of the observer
point from the circular trajectory in the plane defined by the
trajectory. We can also define a transverse displacementy of
the observer point out of the plane of the trajectory, and a
total transverse displacementr5Ax21y2.

These equations for the scalar and vector potentials are
hard to solve, but fortunately we will not have to. Equation

~1! demonstrates that we only have to know the derivatives
of the potentials to find the electric field in the direction of
motion. Note that the integrands for both the scalar and the
azimuthal components of the vector potentials are only func-
tions of the separation of the source and observer locations,
and the radius of curvature, and not of the absolute azimuthal
position or time as long as the path of the integral is defined
relative to the source particle. Thus the derivatives indicated
in Eq. ~1! are trivial and are equal to the integrand evaluated
at the limits of integration times the respective derivatives of
the limits themselves.

Now note that the position of the front of the bunch rela-
tive to an observer point at an azimuthal angleu is given by
z f5z02bct/R1u, for somez0, and the position of the rear
of the bunch is given byz r5z02bct/R1u1d/R. The dif-
ferentiation in Eq.~1! for the azimuthal electric field results
in ~to lowest order inx/R!
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Each of the three terms in parantheses is easily identified
with a physical mechanism: the first term is the usual space-
charge term, and vanishes if the beam is ultrarelativistic; the
second term is the noninertial space-charge term; and the
third term is the coherent synchrotron radiation term. It is
clear that the second and third terms vanish if the radius of
curvature of the circular motion becomes infinitely large;
thus the noninertial space-charge force and the coherent syn-
chrotron radiation force exist only when the beam is in cir-
cular motion.

In order to evaluate the effects of the noninertial space-
charge force and the coherent synchrotron radiation force,

FIG. 1. Geometry defining the observer position, the present
angle of the source particlez, and the retarded angle of the source
particlez8 for circular motion.
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we need to find the retarded angle and evaluate the denomi-
nator in the second fraction. The retarded anglez8 satisfies
the transcendental equation

b2R2~z82z!25r212R~R1x!~12cosz8!, ~6!

which is, in general, hard to solve. Later, we will find solu-
tions in certain limits that yield interesting results. Note that
the retarded times depend strongly on the radius of curva-
ture. What is referred to above as the ‘‘usual’’ space-charge
term is not, in general, the same as the space-charge term
that a bunch in straight-line motion would experience; only
the scaling with beam energy is the same.

Using the geometry in Fig. 1, we find that the denomina-
tor of the second fraction in Eq.~5! is given by

r ret2rW ret•uW ret/c5A2R~R1x!~12cosz8!1r22bR sinz8

2bx~12cosz8!sinz8. ~7!

If the retarded angle is very small~for example, if the re-
tarded distance is very small or the radius of curvature is
very large!, the denominator isAz2R21r2/g2, wherez is the
unretarded position of that end of the bunch@5#.

III. RELATIVELY STRAIGHT-LINE MOTION LIMIT

If g2Rz is much less than the radius of curvature of the
bunch’s circular motion, for all positionsz within the bunch,
the motion between the retarded time and the present time is
essentially straight line. Let us consider a very large radius of
curvature relative to the dimensions of the beam, so that the
motion is essentially straight over the dimensions of the
beam. Now let us consider an observer point at a radiusr
from the line, and a source point at a positionRz behind the
observer point on the line, shown in Fig. 2. If the motion is
straight, the retarded position of the source point is given by
Rz1z where the retarded distance is

z5Rzb2g21g2AR2z2b41b2~R2z21r2!/g2. ~8!

The retarded distance is a strong function of the separation
Rz between the source point and the observer point. For
example, if the beam is highly relativistic,z52Rzb2g2 if
the observer point is in front of the source point~z is posi-
tive!, z52b2(R2z21r2)/2Rz if the observer point is be-
hind the source point~z is negative!, andz5bgr if they are
at the same position~z50!. The retarded position is small

only if the source point is in front of the observer point, and
the retarded position can become extremely large if it is not.
If the radius of curvature of the circular motion is large com-
pared to all retarded positions, the circular motion can be
considered essentially linear.

In this limit, the retarded distance denominator in Eq.~7!
becomesA(Rz)21r2/g2, and the azimuthal electric field is
given by
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The noninertial space-charge force is the same as the space-
charge force for straight-line motion, multiplied byg2x/R,
and leads to no net energy loss of the bunch. Its characteristic
magnitude~ignoring theQ/4p« factor! is a/Rd2, wherea is
the bunch radius andd is the bunch length. The coherent
synchrotron radiation force term is only non-negligible for
source particles behind the observer point~where the re-
tarded position can become large!, and its characteristic mag-
nitude for those particles is 2~g221!2/R2. Because both
g4/R2!1/d2 ~the straight-line assumption above!, and
a/R!1, either term could dominate; however, if the radius of
curvature is increased~keeping everything else constant!, the
coherent synchrotron radiation effect integrated over a given
bending angle vanishes, whereas the effect from the nonin-
ertial space-charge force remains a constant.

IV. ULTRARELATIVISTIC MOTION

In this limit, we assumeb equals unity. This is a much
more interesting limit, and leads to coherent synchrotron ra-
diation that actually becomes larger~integrated over a given
bending angle! as we increase the radius of curvature of the
circular motion.

There are two regimes within this limit where we can
solve Eqs.~5! and ~6!: ~i! a pencil beam with no transverse
extent, and~ii ! a pancake beam with no longitudinal extent.

(i) Pencil beam.Now we are assuming that the beam has
no transverse size~a;0!. The transcendental expression for
the retarded position to fourth order in the retarded angle is

z222zz852z84/12, ~10!

which has the solutionz8>z/2 for source particles in front of
the observer point~z negative!, and z8>~24z!1/3 for source
particles behind the observer point~z positive!. By consider-
ation of the other terms in Eq.~6!, we see that this limit is
valid if a/R!~24z!2/3/6, which can always be made valid for
a large enough radius of curvature~recall thatz;d/R!. This
limit is valid for most of a 1-ps-long, 1-mm-radius bunch in
a bend with a radius of curvature greater than 20 cm.

The particles in front of the observer point lead to small
contributions ofa/Rd2 for the noninertial space-charge force
and 1/R2 for the coherent synchrotron radiation force. Like-
wise, the noninertial space-charge force from source particles
behind the observer point is abouta/3Rd2. However, the

FIG. 2. Geometry defining the observer position, the present
position of the source particleRz, and the retarded position of the
source particleRz1z for straight-line motion.
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force from the coherent synchrotron radiation due to the par-
ticles behind the observer point scales as

12cosz8

dR~z82sinz82z!
>

z82/2

dR~z83/62z!
5

2

31/3dRz1/3

5
2

31/3d4/3R2/3, ~11!

which in fact becomes larger if the radius of curvature is
increased, keeping all other parameters fixed. This depen-
dence on the radius is the same as reported in Refs.@3# and
@6#.

(ii) Pancake beam. In this limit, we assume thatd is
very small. From Eq.~6! this means that the bunch length
obeysd ! a2/Rz8. Keeping the expression for the retarded
angle to fourth-order again, we now find that

d825
6

R
~x1Ax21r2/3!, ~12!

for both x positive and negative. The requirement on the
bunch length for this limit now becomesd ! a3/2/R1/2. This
limit is approached for bunch lengths less than 100 fs for a
bunch radius of 1 mm and a bend with a radius of curvature
of 1 m. For longer bunch lengths or larger radii of curvature,
a smaller and smaller fraction of the beam is within this
limit. For this case, the denominator in Eq.~5! becomes

Rz82~R1x!sin z8>z8Ax21r2/3. ~13!

Using this, we can show that the noninertial space-charge
force scales as

a/R
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'

1
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, ~14!

and the force from the coherent synchrotron radiation scales
as

12cosz8
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. ~15!

Thus, in this limit, both forces have a similar magnitude, and
scaling, and both can lead to a very significant degradation of
the beam quality for large radii of curvature. However, as the
beam radius is increased, the amount of the bunch that con-
tributes to this force scales as 1/R1/2, and the forces inte-
grated over the bunch distribution do not grow unbounded.

V. NUMERICAL SIMULATIONS USING THE
NONINERTIAL SPACE-CHARGE AND COHERENT

SYNCHROTRON RADIATION FORCES

In this section, we will incorporate the expression found
for the total space-charge force from a line of charge in cir-
cular motion into a numerical particle-tracking code. This
will be used to quantify the emittance growth due to the
noninertial space-charge force and the coherent synchrotron
force for a typical accelerator bend system, over a wide
range of bunch and bend parameters. The emittance growth
calculated for typical parameters is large enough to exceed

the maximum allowed emittance for many proposed applica-
tions.

It is straightforward to numerically evaluate the space-
charge forces using the expressions in Eqs.~5! and ~6! for
either a single line of charge or for a bunch assembled from
a collection of such lines. The main issue in a simulation of
this sort is the calculation of the retarded angle relative to the
observer point~see Fig. 1!. It is tempting to use the ultrarela-
tivistic, pencil-beam approximations@given in the paragraph
after Eq.~10!# for the retarded angle, because in that case,
the retarded angle is a very simple function of the present
anglez. In Fig. 3 we plot the retarded angle calculated in this
manner~the solid line! and the actual retarded angle calcu-
lated by direct solution of Eq.~6! ~the dashed line!, as a
function of present azimuthal anglez between the source and
observer points, withx51 mm,y50 mm, a radius of curva-
ture of 1 m, and a beam energy of 100 MeV.~Recall that a
positive angle means that the observer point is in front of the
source particle.! A 1-ps bunch extends over about 331024

rad. The approximate retarded angle is very accurate, with
some deviation near a present angle of 0 rad. Since the force
from the coherent synchrotron radiation vanishes as the re-
tarded angle goes to zero, we would expect that this approxi-
mation for the retarded angle is fine for this force. In Fig. 4
we plot the coherent synchrotron radiation force from one
edge of a line of charge@by using one of the limits in Eq.~5!#
using the approximation for the retarded angle~the solid
line! and using the actual retarded angle@numerically solving
Eq. ~6!# as a function of the present anglez. In this and the
following figure, Fig. 5, the transverse offsets, the radius of
curvature, and the beam energy are the same as in the pre-
ceding figure, Fig. 3. There is no significant deviation, and
this approximation can predict the effect from the coherent
synchrotron radiation force to within 10%. However, the
noninertial space-charge force is only significant if the
present angle is very close to zero, and we would expect that
small errors in the approximation of the retarded angle can
become important. Note that the retarded angle enters into
this force only in the denominator, as described in Eq.~7!. In
Fig. 5 we plot the noninertial space-charge force using the
approximation for the retarded angle~the solid line! and us-
ing the actual retarded angle~the dashed line!. For this force,

FIG. 3. Comparison of the predicted retarded angle~solid line!
using the approximations after Eq.~10! and the actual retarded
angle~dashed line! found by solving Eq.~6!.
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the actual retarded angle must be used in numerical simula-
tions.

The retarded angle can be found by recursively solving
Eq. ~6!. However, because the retarded angle must be found
separately for each set of points in the simulation for each
time step, the most efficient iteration scheme must be used.
An extremely efficient scheme is defined by these steps:~1!
use the pencil-beam approximations after Eq.~10! for a first
guess of the retarded anglez8* , ~2! use

z85
A2R~R1x!~12cosz8* !1r2

bR
1z ~16!

@from Eq. ~6!# to make a refined first guess for the retarded
angle,~3! solve Eq.~6! for the present angle from the guess
for the retarded angle and for a slightly shifted retarded
angle, and use a linear extrapolation to make a new guess for
the retarded angle that will lead to the desired present angle.
Step~3! can be iterated until the relative error between the
actual present angle and the present angle corresponding to
the guess for the retarded angle is sufficiently small. For

relative errors of 1% or less, typically only 5–10 iterations
are needed, even with present angles very close to zero.

Using an existing line-to-point space-charge routine in the
particle-tracking simulation codePARMELA @7#, we have in-
cluded the forces in Eq.~5! to determine the effect of the
noninertial space-charge and the coherent synchrotron radia-
tion forces for a short beam, a two-dipole ‘‘dogleg,’’ shown
in Fig. 6. We will quantify the amount of the beam quality
degradation caused by these effects by calculating the trans-
verse normalized rms emittance growth in this system, where
we define the transverse normalized rms emittance by

«5bgA^x2&^x82&2^xx8&2, ~17!

and wherex8 is the angular divergence of a particle relative
to the centroid of the bunch and the brackets indicate en-
semble averages over the entire beam distribution. Note that
there is no emittance growth in the absence of space-charge
forces for an initially monoenergetic beam in the two-dipole
system shown in Fig. 6, if the dipoles are identical. For these
simulations, the beam path in the dipoles was assumed to be
10 cm and the dipoles are separated by 1.8 cm. In addition,
the bunch was nominally assumed to contain 1 nC of charge
and to have a Gaussian longitudinal distribution with a full
width at half maximum~FWHM! of 1 ps, to have a uniform
radial distribution with a 1-mm radius, and to be at 400
MeV; and the bend angle was assumed to be 5°~the radius of
curvature of the circular motion was then about 115 cm!. The
initial beam divergence~and consequently the initial emit-
tance! was assumed to be zero. The emittance growth from
the ‘‘normal’’ space-charge force in Eq.~5! ~proportional to
1/g2! was about 0.02 mm mrad for these parameters, for
comparison to the following results.

PARMELA was modified to include separately both the
noninertial space-charge force and the force from the coher-
ent synchrotron radiation, in order to clearly distinguish the
effects from each force. In the next seven figures, the emit-
tance growth from each force will be presented separately,
with the solid line for the noninertial space-charge force and
the dashed line for the force from the coherent synchrotron
radiation. By including both effects in a simulation, we have
verified that the overall emittance growth is roughly the sum
of the individual emittance growths in quadrature. In Fig. 7
we plot the emittance growths from these effects as a func-
tion of the number of particles included in the simulation.
The emittance growths do not depend strongly on the num-
ber of particles, which was expected for the coherent syn-
chrotron force but not necessarily for the noninertial space-

FIG. 4. Comparison of the approximate coherent synchrotron
radiation force~solid line! using the approximation for the retarded
angle and the actual coherent synchrotron radiation force~dashed
line!.

FIG. 5. Comparison of the approximate noninertial space-charge
force~solid line! using the approximation for the retarded angle and
the actual noninertial space-charge force~dashed line!.

FIG. 6. Two-dipole ‘‘dogleg’’ geometry used for the numerical
emittance growth calculations.
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charge force. For all the subsequent figures, 500 particles
were used in the numerical calculations of the emittance
growth from the coherent synchrotron radiation force; be-
cause the simulations of the noninertial space-charge force
took roughly ten times more computer time~resulting from
the iterations of the retarded times!, we used only 200 par-
ticles for the numerical calculations of the emittance growth
from the noninertial space-charge force. The error in the
emittance growth from the noninertial space-charge force in-
troduced by using so few particles was estimated by compar-
ing the results of simulations of only a single time step with
up to 4000 particles. The results with 200 particles overesti-
mate the emittance growth by about 20–25 %. The error in-
troduced by the transitions at the start and at the end of the
dipoles is not significant because only particles very near the
observer point contribute a large noninertial space-charge
force. However, the transitions can influence the forces from
the coherent synchrotron radiation significantly. In the simu-
lation, all particles are assumed to be in circular motion if the
center of the bunch is in the dipole. As a result, during the
starting transition, some particles are considered to be in cir-
cular motion while they are actually undergoing straight-line
motion ~which leads to no noninertial space-charge force or
coherent synchrotron radiation force!. During the ending
transition, these same particles are considered to have
straight-line motion while they are actually still in circular
motion. The actual coherent synchrotron radiation force in-
duced by these particles on the rest of the bunch during the
ending transition is somewhat less than the assumed coherent
synchrotron radiation force during the starting transition be-
cause the retarded angle is underestimated. Considering the
form of the coherent synchrotron radiation force in Fig. 4,
we see that a larger retarded angle leads to a lower force, but
also that the force is fairly flat. Estimates indicate that the
coherent synchrotron radiation forces calculated in this man-
ner are on the order of 25% too large for our nominal 1-ps
bunch and a 5° bend-angle dogleg, which directly translates
into an error of the same size for the emittance growth. It

should be noted that the retarded angles are spread over a
smaller fraction of the bend as the bend angle is increased,
roughly to the1

3 power. Also, as the bunch length decreases
or the radius of curvature of the bunch trajectory increases,
this error will decrease, and will eventually vanish for a very
short bunch in a bend with a very large radius of curvature.
These errors should be kept in mind; despite them, the scal-
ings seen in the following figures should be valid. Note that
for the nominal case described above, the normalized rms
emittance growths are nearly equal in size and about 5
mm mrad for the noninertial space-charge force and 3
mm mrad for the coherent synchrotron radiation force. Even
with these modest parameters~a 1-ps, 1-kA, 1-mm-radius
beam!, these emittance growths are larger than the target
emittances of many future, high-brightness accelerators, and
these emittance growths must be avoided. For the nominal
case, the coherent synchrotron radiation leads to a fractional
energy loss of the total bunch energy of 231024 and the
noninertial space-charge force to a smaller fractional energy
loss of 531026.

In Fig. 8, we plot the emittance growths from these effects
as a function of beam energy, and see that both emittance
growths approach a limit as the energy is increased. It is
interesting to note that the emittance growths from these ef-
fects for energies below 50 MeV are about an order of mag-
nitude smaller than their asymptotic values.

In Fig. 9 we plot the emittance growth as a function of the
bunch radius. Earlier estimates of the noninertial space-
charge force@1# predicted an emittance growth that scales as
the square of the bunch radius, which appears to be only true
for bunch radii,1 mm.

In Fig. 10 we plot the emittance growth as a function of
bunch length. Earlier estimates of the noninertial space-
charge force@1# predicted an emittance growth that scales
inversely as the square of the bunch length, which appears
valid at the longer bunch lengths. Detailed analyses of the
simulations indicate that the nonzero bunch radius leads to
an appreciable bunch lengthening while the bunch is in the
dipoles, and this could be influencing the results for very

FIG. 7. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
MeV bunch in the 5°, two-dipole system as a function of the num-
ber of particles used in the simulations. The emittance growth from
the noninertial space-charge force is shown as a solid line and the
emittance growth from the coherent synchrotron radiation force is
shown as a dashed line.

FIG. 8. Emittance growth for a 1-ps, 1-kA, 1-mm-radius bunch
in the 5° two-dipole system as a function of beam energy. The
emittance growth from the noninertial space-charge force is shown
as a solid line and the emittance growth from the coherent synchro-
tron radiation force is shown as a dashed line.
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short bunch lengths. Recall that the error in the calculation of
the coherent synchrotron radiation force increases as the
bunch length is increased.

In Fig. 11 we plot the emittance growth as a function of
bend angle. For very small bend angles, the emittance
growth appears to scale as the square of the bend angle, as
predicted before@1#, but the growth becomes more linear for
bend angles of 5° and beyond. Again, this is probably due to
a distortion of the bunch shape as the bunch becomes curved
in the dipoles. The bunch is distorted more at the higher bend
angles.

In Fig. 12 we plot the emittance growth as a function of
the bend radius of curvature, while maintaining 5° bends in
the dipoles. As predicted, the emittance growth from the co-
herent synchrotron radiation does indeed increase with an
increased bend radius~and roughly as the13 power!, whereas

the emittance growth from the noninertial space-charge force
decreases. Note that the sum of the two emittance growths in
quadrature leads to a total growth of about 6 mm mrad,
roughly independent of bend radius over this range.

A very nice feature of this simulation technique is that it
is very easy to include the effect of image charges in the
beam box walls by including image lines of charge. In this
manner, we can quantify the effect of suppressing the coher-
ent synchrotron radiation by making the beam box dimen-
sions such that the microwave radiation from this effect can-
not propagate, as suggested in Refs.@2,3,6#. The major effect
on the bunch is that the image charges from the beam box
produce a counterforce on the observer particles in the
bunch; however, even if the radiation is suppressed it is not
clear that the forces leading to the emittance growth are sup-
pressed. For simplicity, we will consider the case where

FIG. 9. Emittance growth for a 1-ps, 1-kA, 400-MeV bunch in
the 5°, two-dipole system as a function of the bunch radius. The
emittance growth from the noninertial space-charge force is shown
as a solid line and the emittance growth from the coherent synchro-
tron radiation force is shown as a dashed line.

FIG. 10. Emittance growth for a 1-kA, 1-mm-radius, 400-MeV
bunch in the 5°, two-dipole system as a function of the bunch
length. The emittance growth from the noninertial space-charge
force is shown as a solid line and the emittance growth from the
coherent synchrotron radiation force is shown as a dashed line.

FIG. 11. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
MeV bunch in the two-dipole system as a function of the bend
angle. The emittance growth from the noninertial space-charge
force is shown as a solid line and the emittance growth from the
coherent synchrotron radiation force is shown as a dashed line.

FIG. 12. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
MeV bunch in the 5° two-dipole system as a function of the bend
radius. The emittance growth from the noninertial space-charge
force is shown as a solid line and the emittance growth from the
coherent synchrotron radiation force is shown as a dashed line.
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there is only a single conducting plane near the bunch, par-
allel to the bend trajectory~in this case there is only one
image line of charge, instead of an infinite number as there
would be with two planes!. In the final figure, Fig. 13, we
plot the emittance growth from these forces as a function of
the separation between the bunch center and the conducting
plane. There is essentially no change in the emittance growth
from the noninertial space-charge force, and only a modest

decrease in the emittance growth from the coherent synchro-
tron radiation force. We can observe that this suppression
technique would only be useful for~1! very large radius
bends where the emittance growth from the noninertial
space-charge force vanishes and~2! very small radius
bunches~,0.1 mm! where the bunch can be placed very
close to the beam box wall~well within 1 mm for bunch
lengths,1 ps!.

VI. CONCLUSION

We have developed a formalism that describes the nonin-
ertial space-charge force and the force from the coherent
synchrotron radiation. This formalism can be used in numeri-
cal simulations of accelerator-bending systems in order to
determine the emittance growth of a high-brightness beam in
a bend. For the nominal bunch-dipole system we considered,
the emittance growth is very significant, and roughly scales
as theoretically predicted. Over the range of the numerical
simulations, the emittance growth from both effects together
is roughly independent of the radius of curvature of the
bunch in the dipoles. In addition, very little effect on the
emittance growth was observed by suppressing the coherent
synchrotron radiation. These effects may be very important
for future, high-brightness accelerators with very short bunch
lengths.
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FIG. 13. Emittance growth for a 1-ps, 1-kA, 1-mm-radius, 400-
MeV bunch in the 5°, two-dipole system as a function of the sepa-
ration between the bunch center and a conducting plane in order to
determine the effect of suppressing the coherent synchrotron radia-
tion. The emittance growth from the noninertial space-charge force
is shown as a solid line and the emittance growth from the coherent
synchrotron radiation force is shown as a dashed line.
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